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Problem 1: (Ch.5.3)
Hierarchical Models and Multiple Comparisons:

a. Reproduce the computations in Section 5.5 for the educational testing example. Use the posterior
simulations to estimate:

i. for each school j, the probability that its coaching program is the best of the eight; and

ii. for each pair of schools, j and k, the probability that the coaching program in school j is
better than that in school k.

b. Repeat (a), but for the simpler model with τ set to∞ (that is, separate estimation for the eight schools).
In this case, the probabilities (ii) can be computed analytically.

c. Discuss how the answers in (a) and (b) differ.

d. In the model with τ set to 0, the probabilities (i) and (ii) have degenerate values; what are they?

Table 5.2:

School yj σj

A 28 15
B 8 10
C -3 16
D 7 11
E -1 9
F 1 11
G 18 10
H 12 18

Solution

a. Let yj = ȳ.j and σ2
j = σ2/nj be the jth school’s estimated coaching effect1 on SAT-V scores and its

corresponding sampling variance, for j = 1, 2, ..., 8, where nj is the sample size in school j. Moreover,
let θj ’s be the true population coaching effects in the eight schools, which are assumed to be drawn from
a normal distribution with hyperparameters (µ, τ). Thus assuming that all yj ’s are obtained through
independent experiments and have approximately normal sampling distributions, for which σ2

j ’s are
known, we compute the posterior distribution of the parameters θj using the normal hierarchical model,
presented in Section 5.4, as follows:

1Where ȳ.j = 1
nj

∑nj
i=1 yij is the sample mean of the jth group (or school) and is a sufficient statistic for this model.
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(Sampling) Likelihood:
yj |θj ∼ N(θj , σ2

j ), for j = 1, 2, ..., 8

Prior:

p(θ1, ..., θ8|µ, τ) =
8∏
j=1

N(θj |µ, τ2)

p(θ1, θ2, ..., θ8) =
∫ 8∏

j=1
[N(θj |µ, τ2)]p(µ, τ)d(µ, τ)

Noninformative (Uniform) Hyperprior:

p(µ, τ) = p(µ|τ)p(τ) ∝ 1

Joint Posterior:

p(θ, µ, τ |y) ∝ p(µ, τ)p(θ|µ, τ)p(y|θ)

∝ p(µ, τ)
8∏
j=1

N(θj |µ, τ2)
8∏
j=1

N(yj |θj , σ2
j )

Conditional Posterior of θj :

θj |µ, τ, yj ∼ N(θ̂j , Vj), for j = 1, 2, ..., 8

where θ̂j =
1
σ2
j
yj + 1

τ2µ

1
σ2
j

+ 1
τ2

, Vj = 1
1
σ2
j

+ 1
τ2

Marginal Posterior of (µ, τ):

p(µ, τ |y) = p(µ|τ, y)p(τ |y) ∝ p(µ, τ)p(y|µ, τ)

∝ p(µ, τ)
8∏
j=1

N(yj |µ, σ2
j + τ2)

Posterior of µ given τ :

µ|τ, y ∼ N(µ̂, Vµ), where µ̂ =

∑8
j=1

1
σ2
j
+τ2 yj∑8

j=1
1

σ2
j
+τ2

, V −1
µ =

8∑
j=1

1
σ2
j + τ2

Marginal Posterior of τ :
p(τ |y) = p(µ, τ |y)

p(µ|τ, y)

∝
p(τ)

∏8
j=1 N(yj |µ, σ2

j + τ2)
N(µ|µ̂, Vµ)

∣∣∣∣∣
µ=µ̂

=
p(τ)

∏8
j=1 N(yj |µ̂, σ2

j + τ2)
N(µ̂|µ̂, Vµ)

∝ p(τ)V 1/2
µ

8∏
j=1

(σ2
j + τ2)−1/2 exp

(
− (yj − µ̂)2

2(σ2
j + τ2)

)
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Assuming a uniform prior, p(τ) ∝ 1, on τ , we obtain the following graph of the marginal posterior
density and approximate CDF of τ (in range [0, 30]), via simulation, shown in Figures 1 and 2
below.
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Figure 1: Density of Marginal Posterior Tau
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Figure 2: Approximate CDF of Marginal Posterior Tau
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To obtain the disired probabilities (i) and (ii), we first follow these steps in a simulation-based
approach for approximating our parameters of interest:

1. Sample n values2 of τ from its marginal posterior distribution3, p(τ |y), by appeal to its approx-
imate CDF, Fτ , through the inverse transform (sampling) method for discrete distributions
(mentioned in Section 1.9) as follows.

a. Sample n values from U [0, 1].

b. For each draw, u, find the value of τ = τ∗ in the CDF for which u = Fτ (τ∗), or
equally, for which τ∗ = F−1

τ (u). That is, τ∗ = mq, where q is the index for which∑q
i=1 P (τ = τi) ≤ u, and m = max{τ}/n is the interval4 used for τ .

2. Conditional on τ , sample n values of µ from µ|τ, y ∼ N(µ̂, Vµ). Namely, for each draw of τ
from (1), τx, compute the values µ̂x and Vµx , and draw a single µx from N(µ̂x, Vµx). This
should result in n total pairs (µ, τ).

3. Conditional on each (µ, τ) pair, sample n values for each thetaj from its corresponding
conditional posterior θj |µ, τ, yj ∼ N(θ̂j , Vj). In other words, for each simulated pair, (µx, τx),
compute the values θ̂jx and Vjx , and draw a single θjx from N(θ̂jx , Vjx). This should result
in n total draws of θj for each j=1,2,. . . ,8.

Using our simulated posterior values of τ, µ, and θj , we now estimate probabilities (i) and (ii) as
follows.

i. Estimating the probability that school j’s coaching program is the best of the eight is
tantamount to estimating the probability that school j has the greatest coaching effect, θj .
Thus, for each n-sample of θj we compute,

P (θj = max{θ1, θ2, ..., θ8}) = 1
n

n∑
i=1

[
θij = max{θi1, θi2, ..., θi8}

]
.

That is, for each θj , we determine the proportion of times (out of the n draws) that it was
the largest of all eight coaching effects. Multiplying each resulting value by 100, we obtain
the following eight probabilities in the form of percentages.

Table 2: Probability (%) of Having the Best Coaching Program

School Probability (%)
A 24.53
B 10.67
C 8.13
D 9.63
E 5.33
F 6.93
G 20.20
H 14.57

2For this simulation we use n = 3, 000.
3Given the support of this distribution, it is safe to restrict our sample to values of τ between 0 and 30. Moreover, in using

increments of size 0.01 to estimate τ ’s marginal posterior density, we limit our sample further to values of τ ∈ {0, 0.01, 0.02, ..., 30}.
4For this simulation, m = 30/3, 000 = 0.01.
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ii. For each pair of schools, j and k, the estimated probability that the coaching program in
school j is better than that in school k can be expressed as the probability that school j’s
coaching effect, θj is greater than the coaching effect in school k, θk. Namely,

P (θj > θk) = 1
n

n∑
i=1

θij > θik, for {j, k ∈ {1, 2, ..., 8}| j 6= k}.

In a similar approach to (i), that is, we calculate for each (θj , θk) pair, the proportion of
times (of all n draws) that θj was greater than θk. Multiplying each resulting value by 100,
we obtain the following 8!

(8−2)! = 56 probabilities in the form of percentages.

Table 3: Probability (%) of Having a Better Coaching Program than School k

School k
j A B C D E F G H
A — 12.87 21.17 14.00 23.33 20.13 6.70 12.67
B 16.70 — 25.10 17.73 27.90 24.83 8.97 15.90
C 19.80 20.63 — 22.20 34.23 29.83 11.90 19.83
D 23.37 26.00 35.13 — 39.73 35.97 15.67 24.63
E 27.70 31.90 40.37 32.47 — 42.10 20.23 30.00
F 31.83 38.17 47.10 38.40 53.23 — 25.60 35.53
G 35.73 44.60 53.43 44.93 60.23 54.00 — 41.47
H 40.57 52.13 59.03 51.63 65.90 60.60 38.13 —

b. Evaluating the normal hierarchical model from part (a) in the limit as τ →∞, we obtain the following
conditional posterior distribution for θj ,

θj |µ, τ, yj ∼ N(θ̂j , Vj), for j = 1, 2, ..., 8,

where θ̂j = lim
τ→∞

1
σ2
j
yj + 1

τ2µ

1
σ2
j

+ 1
τ2

= yj and Vj = lim
τ→∞

1
1
σ2
j

+ 1
τ2

= σ2
j .

That is, under this new assumption, each θj can be estimated separately from their observed sample
means and variances. Namely, from a normal distribution with parameters yj and σ2

j . Following the
same simulation-based procedure to compute probabilities (i) and (ii) in the previous section, we now
obtain the following.

Table 4: Probability (%) of Having the Best Coaching Program

School Probability (%)
A 52.27
B 3.43
C 2.50
D 3.97
E 0.37
F 1.33
G 17.30
H 18.83
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Table 5: Probability (%) of Having a Better Coaching Program than School k

School k
j A B C D E F G H
A — 25.37 59.07 29.67 58.67 51.20 4.77 25.47
B 4.50 — 61.30 32.73 63.37 55.10 5.77 27.40
C 5.30 31.90 — 35.33 67.43 58.23 7.03 29.30
D 5.73 35.17 65.57 — 71.53 61.30 8.50 31.27
E 6.47 38.57 68.03 41.73 — 65.30 10.13 33.27
F 7.40 42.70 70.53 45.17 78.30 — 12.03 35.07
G 8.73 46.73 73.03 48.93 81.23 71.17 — 36.97
H 10.10 50.73 74.73 52.40 83.77 73.87 15.80 —
Note:
Asssuming infinite between-group variance.

c. Evidently, the probabilities from part (a) displayed in Tables 2 and 3 are far less extreme compared to
those obtained in part (b), which appear to overemphasize the differences between observed coaching
effects. Particularly, this change in probabilities from part (a) to part (b) can be attributed to the fact
that when we allow the hyperparameter, τ , to take on an infinite value, our posterior estimates are
pulled away from one another in the directions of their distinct sample statistics, resulting in values for
(i) and (ii) that are similar to what we would obtain from the observed data. That is, in more practical
terms, when we assume a population distribution in which variability is considerably large, we allow
these effects/parameters to be radically different from each other, and hence, we increase our posterior
uncertainty about the true value of each θj .

d. Probabilities (i) and (ii) given by Tables 6 and 7 below, which were computed (using the same
simulation-based approach from parts (a) and (b)) under the assumption that τ = 0, evidently take
on degenerate values. Specifically, we notice in Table 6 that each P (θj = max{θ1, θ2, ..., θ8}) ≈ 1/8.
That is, conditional on τ = 0, all schools have approximately the same probability of having the
largest coaching effect. Similarly, we notice in Table 7 that P (θj > θk) ≈ 1/2, meaning that for any
pair of schools (j, k) ∈ {1, 2, ..., 8}|j 6=k there is roughly a 50% chance that the effect in school j is
greater than that in school k, under the assumption that no variability exists between coaching effect
estimates. Evaluating the normal hierarchical model from part (a) in the limit as τ → 0 we see that
each coaching effect estimate, θj , eventually reduces to the pooled estimate, θ̂ = ȳ... This would indicate
that observations, yj , must come from the same normal distribution and produce independent estimates
of the same quantity, resulting in the degeneracy we see in the tables below. Thus, we can infer under
this assumption that coaching effects in all eight schools are equal.

Table 6: Probability (%) of Having the Best Coaching Program

School Probability (%)
A 11.53
B 13.03
C 12.83
D 11.87
E 12.10
F 12.23
G 12.03
H 14.37
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Table 7: Probability (%) of Having a Better Coaching Program than School k

School k
j A B C D E F G H
A — 35.10 35.23 34.17 34.77 35.73 33.57 32.77
B 38.03 — 37.73 35.93 36.70 37.93 36.20 34.70
C 40.00 39.20 — 38.23 38.93 40.10 38.33 36.70
D 42.17 41.67 42.50 — 41.23 42.17 40.60 39.03
E 43.97 44.40 44.47 42.60 — 44.73 43.10 41.23
F 46.30 46.47 46.93 44.87 45.50 — 45.60 44.03
G 48.47 49.03 49.43 46.97 47.87 49.47 — 46.33
H 51.23 51.33 51.77 49.67 50.37 52.20 51.33 —
Note:
Asssuming 0 between-group variance.

Posterior Estimates Under Different Assumptions for Tau

Table 8: Coaching Effect Estimates

School Observed Complete Pooling Partial-Pooling No-Pooling
A 28 7.2 11 27.55
B 8 7.54 7.77 7.9
C -3 7.7 6.08 -3
D 7 7.66 7.47 6.97
E -1 7.66 5.16 -1.02
F 1 7.46 6.02 0.84
G 18 7.69 10.44 17.99
H 12 8.39 8.6 12.75

Variance: 109.07 0.11 4.44 107.83
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Figure 3.a: Coaching Effect Posterior Estimates, Complete Pooling
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Figure 3.b: Coaching Effect Posterior Estimates, Partial−Pooling
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Figure 3.c: Coaching Effect Posterior Estimates, No−Pooling
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Problem 2: (Ch.5.5)
Mixtures of independent distributions: Suppose the distribution of θ = (θ1, ..., θJ ) can be written as a
mixture of independent and identically distributed components:

p(θ) =
∫ J∏

j=1
p(θj |φ)p(φ)dφ.

Prove the covariances, Cov(θi, θj), are all non-negative.

Solution

Intuition: If all elements of θ are independent and identically distributed (iid) given (hyper)parameter(s),
φ, then, it is safe to treat θ as an iid random variable which can take on any value in {θ1, ..., θJ} (denoting
J independent groups/experiments). From this, it would follow that they must have equal conditional
expectations (namely, E[θi∈J |φ] = E[θj 6=i∈J |φ] = E[θ|φ]), and hence, equal expectations (E[θi∈J ] = E[θj 6=i∈J ])
by the Law of Total Expectation. This being the case, it would make sense to extend a similar thinking to
their covariances. That is, if all elements of θ are estimating the same quantity, then it seems reasonable for
their covariances to reduce to the variance in θ, which necessarily must be greater than 0.
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Proof : Provided that θi|φ are iid, it must be the case that,

∀θi∀θj ∈ θ|i 6=j , E[θi|φ] = E[θj |φ].

Thus, by the Law of Total Covariance (an extension of the Law of Total Variance (or Eve’s Law) outlined in
Section 1.8), it follows that,

Cov(θi, θj) = E
[
Cov(θi, θj |φ)

]
+ Cov

(
E[θi|φ],E[θj |φ]

)
= E

[
E[θi, θj |φ]− E[θi|φ]E[θj |φ]

]
+ Cov

(
E[θ|φ],E[θ|φ]

)
= E

[
E[θi|φ]E[θj |φ]− E[θi|φ]E[θj |φ]

]
+ V

(
E[θ|φ]

)
= E[0] + V

(
E[θ|φ]

)
= V

(
E[θ|φ]

)
.

Noticeably, this is a special case of the Law of Total Covariance in which E[θi|φ] = E[θj |φ] and hence, yields
the variance of E[θ|φ], proving our initial intuition.5 Thus, we conclude that the covariance of any pair of iid
parameters (θi, θj)|i 6=j ∈ θ is simply the total variance of E[θ|φ].

Problem 3: (Ch.5.11)
Nonconjugate hierarchical models: Suppose that in the rat tumor example, we wish to use a normal
population distribution on the log-odds scale: logit(θj) ∼ N(µ, τ2), for j = 1, ..., J . As in Section 5.3, you
will assign a noninformative prior distribution to the hyperparameters and perform a full Bayesian analysis.

a. Write the joint posterior density, p(θ, µ, τ |y).

b. Show that the integral (5.4) has no closed-form expression.

c. Why is expression (5.5) no help for this problem?

In practice, we can solve this problem by normal approximation, importance sampling, and Markov chain
simulation, as described in Part III.

Solution

a. Assuming a noninformative hyperprior, p(µ, τ) ∝ 1, and given a likelihood of yj ∼ Bin(nj , θj) and
a logit-normal distribution6 for each θj , j = 1, 2, ..., J , we obtain the following joint posterior for all
parameters,

p(θ, µ, τ |y) = p(µ, τ)p(θ|µ, τ)p(y|θ, µ, τ)

= p(µ, τ)
J∏
j=1

1
θj(1− θj)

1√
2πτ2

exp
[
−
(
logit(θj)− µ

)2
2τ2

] J∏
j=1

θ
yj
j (1− θj)nj−yj

= p(µ, τ)
J∏
j=1

θ
yj−1
j (1− θj)nj−yj−1 1√

2πτ2
exp

[
−
(
logit(θj)− µ

)2
2τ2

]

∝ 1
τJ

J∏
j=1

θ
yj−1
j (1− θj)nj−yj−1 exp

[
−
(
logit(θj)− µ

)2
2τ2

]
.

b. The integral of the joint posterior above over θ, which can be expressed as a product of J independent
integrals corresponding to each of the parameters, θj , gives us the following marginal posterior of the
hyperparameters,

5Note that this proof makes use of the definition of covariance, properties of expectation and variance/covariance, as well as
independence assumption which allows us to write E[θi, θj |φ] as the product E[θi|φ]E[θj |φ].

6Where each θj ∼ Logit-Normal(µ, τ2), provided that logit(θj) ∼ N(µ, τ2), for j = 1, 2, ..., J .
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p(µ, τ |y) ∝
∫ 1
τJ

J∏
j=1

θ
yj−1
j (1− θj)nj−yj−1 exp

[
−
(
logit(θj)− µ

)2
2τ2

]
dθ

∝ 1
τJ

J∏
j=1

∫
θ
yj−1
j (1− θj)nj−yj−1 exp

[
−
(
logit(θj)− µ

)2
2τ2

]
dθj .

Notably, this integral has no closed-form solution. That is, after inspection, we find that it can’t
be expressed in a way that allows us to evaluate it analytically. First, we may notice that the
integrand has no further simplifications. Secondly, in attempting u-substitution and integration by
parts, we see that neither computation strategy is successful in that they result in other (perhaps
even more) complicated functions which cannot be antidifferentiated. In the case of u-substitution,
where the most sensible choice for uj is logit(θj) (such that duj = θ−1

j (1− θj)−1dθj), we see that,

p(µ, τ |y) ∝ 1
τJ

J∏
j=1

∫
θ
yj
j (1− θj)nj−yj exp

[
− (u− µ)2

2τ2

]
duj

∝ 1
τJ

J∏
j=1

∫
(1− θj)nj

(
θj

1− θj

)yj
exp

[
− (u− µ)2

2τ2

]
duj

∝ 1
τJ

J∏
j=1

∫
(1− θj)nj

[
exp

[
log
(

θj
1− θj

)]]yj
exp

[
− (u− µ)2

2τ2

]
duj

∝ 1
τJ

J∏
j=1

∫
(1− θj)nj exp

[
yj logit(θj)

]
exp

[
− (u− µ)2

2τ2

]
duj

∝ 1
τJ

J∏
j=1

∫
(1− θj)nj exp

[
yjuj −

(u− µ)2

2τ2

]
duj ,

which can be further algebraically manipulated, but ultimately has no integrable from. Similarly,
the approach of integration by parts results in a much more complex expression, which does not
allow for analytical integration. Thus, given that our marginal posterior of the hyperparameters
is not integrable, it follows that one would have to appeal to approximation or simulation-based
techniques to show that it is a proper pdf.

c. Section 5.3 mentions the use of the conditional probability formula (Equation 5.5) shown below to
compute the marginal posterior of a vector of hyperparameters, φ, algebraically, rather than using an
integration method.

p(µ, τ |y) = p(θ, µ, τ |y)
p(θ|µ, τ, y)

Despite the convenience it provides when applied to various (standard) conjugate models however, it is
of no use in our case (for deriving p(µ, τ |y)), given the fact that the denominator, namely p(θ|µ, τ, y),
must be of a known form. That is, to serve as a proportionality constant, which is a necessary condition
provided that this density, like the one we seek to find, is a function of both µ and τ for fixed y, it
would have to have a direct known and integrable form. Notice that,

p(θ|µ, τ, y) = p(θ, µ, τ |y)
p(µ, τ |y) .

Having the same requirements as p(µ, τ |y) regarding a normalizing factor, this presupposes that to
obtain p(θ|µ, τ, y), which is needed to compute p(µ, τ |y) in this way, the desired marginal posterior
itself must have a closed form. And, having shown in part (b) that this is not the case, it follows that
p(θ|µ, τ, y) can’t be known, which prevents us from being able to make use of this approach to obtain
p(µ, τ |y).
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Problem 4: (Ch.5.14)
Hierarchical Poisson model: Consider the dataset in the previous problem, but suppose only the total
amount of traffic at each location is observed.

a. Set up a model in which the total number of vehicles observed at each location j follows a Poisson
distribution with parameter θj , the “true” rate of traffic per hour at that location. Assign a gamma
population distribution for the parameters θj and a noninformative hyperprior distribution. Write down
the joint posterior distribution.

b. Compute the marginal posterior density of the hyperparameters and plot its contours. Simulate random
draws from the posterior distribution of the hyperparameters and make a scatterplot of the simulation
draws.

c. Is the posterior density integrable? Answer analytically by examining the joint posterior density at the
limits or empirically by examining the plots of the marginal posterior density above.

d. If the posterior density is not integrable, alter it and repeat the previous two steps.

e. Draw samples from the joint posterior distribution of the parameters and hyperparameters, by analogy
to the method used in the hierarchical binomial model.

Table 3.3: Counts of Bicycles and Other Vehicles (Restricted to Residential Streets)

Type of Street Bike Route? Counts of Bicycles/Other Vehicles
Residential yes 16/58, 9/90, 10/48, 13/56, 19/103, 20/57, 17/112, 35/273, 35/273,

55/64
Residential no 12/113, 1/18, 2/14, 4/44, 9/208, 7/67, 9/29, 8/154

Solution

a. Let yj be the number of bicycles in the jth residential bike route, and let nj be the corresponding
observed count of all vehicles, such that ȳj = yj/nj is the observed bike traffic rate (proportion of
vehicles observed that were bikes). Similarly, let zk be the observed bike count for the kth residential
non-bike route, where nk denotes its total observed vehicle count and z̄k = zk/nk the observed bike
traffic rate. With j = 1, 2, ..., 10 and k = 1, 2, ..., 8, we rewrite the information from the table above as
follows.

Table 9: Observed Vehicle Counts and Traffic Rates in Residential Bike Routes

j nj ȳj

1 74 0.21621622
2 99 0.09090909
3 58 0.17241379
4 70 0.18571429
5 112 0.15573770
6 77 0.25974026
7 104 0.17307692
8 129 0.13178295
9 308 0.11363636
10 119 0.46218487
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Table 10: Observed Vehicle Counts and Traffic Rates in Residential Non-Bike Routes

k nk zk

1 125 0.09600000
2 19 0.05263158
3 16 0.12500000
4 48 0.08333333
5 217 0.04147465
6 74 0.09459459
7 38 0.23684211
8 162 0.04938272

Restricting our attention only to bike routes, let θj be the “true” hourly bike traffic rate at the jth

location. Assuming a Gamma prior density for these parameters with a noninformative hyperprior,
we obtain the following model (and joint posterior), given the data follows a Poisson distribution.

Likelihood:
yj |θj ∼ Poisson(θj), for j = 1, 2, ..., 10

Prior:
θj |α, β ∼ Gamma(α, β), for j = 1, 2, ..., 10

Noninformative Hyperprior:
p(α, β) ∝ 1

Joint Posterior:

p(θ, α, β|y) ∝ p(α, β)p(θ|α, β)p(y|θ)

∝ p(α, β)
10∏
j=1

Gamma(θj |α, β)
10∏
j=1

Poisson(yj |θj)

∝ p(α, β)
10∏
j=1

βα

Γ(α)θ
α−1
j e−βθj

10∏
j=1

θ
yj
j e
−θj

yj !

b. Given the conjugacy in our model and properties of exchangeability, we can use the conditional
probability formula to obtain the marginal posterior of the hyperparameters as follows. From Equation
5.5,

p(α, β|y) = p(θ, α, β|y)
p(θ|α, β, y) , where p(θ|α, β, y) ∝

10∏
j=1

Gamma(θj |α+ yj , β + 1).

Marginal Posterior of (α, β):

p(α, β|y) ∝ p(α, β)
10∏
j=1

βα

Γ(α)θ
α−1
j e−βθj

θ
yj
j
e−θj

yj !
(β+1)α+yj

Γ(α+yj) θ
α+yj−1
j e−(β+1)θj

∝
10∏
j=1

Γ(α+ yj)
yj !Γ(α)

βα

(β + 1)α+yj

∝
10∏
j=1

Γ(α+ yj)
yj !Γ(α)

(
β

β + 1

)α( 1
β + 1

)yj

∝
10∏
j=1

Negative-Binomial(yj |r = α, p = 1/(β + 1))
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As in Section 5.3, we use p(α, β) ∝ (α + β)−5/2 as the uninformative hyperprior for the alpha
and beta hyperparameters (Equation 5.9), and obtain the following marginal posterior contour
(Figure 4.a) and scatterplot of marginal posterior draws.

0.02

0.04

0.06

2 4 6
α

β

Figure 4.a: Marginal Posterior Contour of (α, β)

0.00

0.05

0.10

0 5 10 15
α

β

Figure 4.b: Marginal Posterior Draws of (α, β)
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c. From Figures 4.a and 4.b, we see that the joint density of α and β is centered around (α ≈ 2.5, β ≈ 0.025)
and that β ≈ α/100 for α values between 0 and 15. That is, these figures show that roughly α ∈ (0, 15]
and β ∈ (0, 0.15]. Given these limits as α and β tend towards 0 and ∞, which are not exact, but show
that 0 < α <∞ and 0 < β <∞, we conclude that the marginal posterior density of hyperparameters
(α, β) must be integrable.

d. It is safe to assume that our choice of hyperprior distribution for this model, successfully yielded an
integrable posterior. However, as discussed in the text, most other noninformative hyperpriors will
result in improper (and hence, non-integrable) posterior densities.

e. Drawing samples from the joint posterior distribution of parameters θj and hyperparameters (α, β), we
obtain the following summary statistics.

Table 12: Summary Statistics of Parameter Posterior Draws

Mean Mean SE SD 2.5% 25% 50% 75% 97.5%
alpha 3.80 0.0192 1.85 1.18 2.47 3.46 4.80 8.25
beta 0.03 0.0002 0.02 0.01 0.02 0.03 0.04 0.07
theta[1] 75.17 0.0648 8.57 59.25 69.33 74.85 80.73 92.97
theta[2] 99.44 0.0723 9.77 81.27 92.71 99.13 105.85 119.50
theta[3] 59.80 0.0587 7.64 45.75 54.45 59.51 64.84 75.62
theta[4] 71.49 0.0633 8.44 55.92 65.57 71.19 77.07 88.86
theta[5] 121.62 0.0822 11.01 101.29 113.89 121.27 128.89 144.15
theta[6] 78.36 0.0656 8.63 62.18 72.47 78.09 83.94 96.17
theta[7] 104.25 0.0757 10.05 85.45 97.38 103.99 110.88 124.91
theta[8] 128.46 0.0816 11.08 107.21 120.89 128.14 135.63 151.12
theta[9] 301.44 0.1339 17.45 268.05 289.68 300.99 313.10 336.52
theta[10] 118.83 0.0774 10.70 98.84 111.53 118.50 125.79 140.70

Problem 5: (Ch.6.2)
Model checking: In Exercise 2.13, the counts of airline fatalities in 1976–1985 were fitted to four different
Poisson models.

a. For each of the models, set up posterior predictive test quantities to check the following assumptions.

i. Independent Poisson distributions.

ii. No trend over time.

b. For each of the models, use simulations from the posterior predictive distributions to measure the
discrepancies. Display the discrepancies graphically and give p-values.

c. Do the results of the posterior predictive checks agree with your answers in Exercise 2.13 (e)?

Solution
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Problem 6: (Ch.6.7)
Prior vs. posterior predictive checks (from Gelman, Meng, and Stern, 1996): Consider 100 observations,
y1, ..., yn, modeled as independent samples from a N(θ, 1) distribution with a diffuse prior distribution, say,
p(θ) = 1

2A for θ ∈ [−A,A] with some extremely large value of A, such as 105. We wish to check the model
using, as a test statistic, T (y) = maxi|yi|: is the maximum absolute observed value consistent with the normal
model? Consider a dataset in which ȳ = 5.1 and T (y) = 8.1.

a. What is the posterior predictive distribution for yrep? Make a histogram for the posterior predictive
distribution of T (yrep) and give the posterior predictive p-value for the observation T (y) = 8.1.

b. The prior predictive distribution is p(yrep) =
∫
p(yrep|θ)p(θ)dθ. (Compare to equation (6.1)). What

is the prior predictive distribution for yrep in this example? Roughly sketch the prior predictive
distribution of T (yrep) and give the approximate prior predictive p-value for the observation T (y) = 8.1.

c. Your answers for (a) and (b) should show that the data are consistent with the posterior predictive but
not the prior predictive distribution. Does this make sense? Explain.

Solution

a. Model7:
p(θ) = 1

2A for θ ∈ [−A,A]yj |θ ∼ N(θ, 1) for j = 1, 2, ..., n

p(θ|y) = p(y|θ)p(θ)

=
n∏
j=1

1√
2π
e−

(yj−θ)
2

2 Iθ∈[−A,A]

∝ e−
∑n

j=1
(yj−θ)

2

2 Iθ∈[−A,A]

∝ e−
(n−1)s2+n(ȳ−θ)2

2 Iθ∈[−A,A]

∝ e−
(n−1)s2

2 e−
n(ȳ−θ)2

2 Iθ∈[−A,A]

∝ e
− (θ−ȳ)2

2 1
n Iθ∈[−A,A]

∝ N(ȳ, 1/n)Iθ∈[−A,A]

Posterior Predictive:

p(yrep|y) =
∫

Θ
p(yrep|θ)p(θ|y)dθ

∝
∫

Θ
e−

(yrep−θ)2
2 e

− (θ−ȳ)2

2 1
n Iθ∈[−A,A]dθ

From the properties of normal distributions outlined in Section 2.5, we gether that the posterior
predictive density is normal with the following mean and variance.

E[yrep|y] = E
[
E[yrep|θ, y]|y

]
= E[θ|y] = ȳ

V ar(yrep|y) = E
[
V ar(yrep|θ, y)|y

]
+ V ar(E[yrep|θ, y]|y)

= E[σ2|y] + V ar(θ|y)

= σ2 + 1
n

7The properties outlined in the following source were used to derive this posterior: https://www.cs.ubc.ca/~murphyk/Paper
s/bayesGauss.pdf.
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Thus, with ȳ = 5.1, σ2 = 1, and n = 100, it follows that yrep|y ∼ N(5.1, 1/100 + 1). Drawing
N = 1, 000 samples of size n = 100 from this posterior predictive distribution and calculating each
sample’s test statistic, we obtain the histogram of T (yrep) = maxi|yrep

i |, given by Figure 5 below.
Moreover, given pB = p(T (yrep) ≥ T (y)|y) ≈ 1

N

∑N
i=1 IT (yrep

i
)≥T (y), the posterior predictive

p-value for T (y) = 8.1 is thus ≈ 0.126. This indicates that approximately 12.6% of the samples
produced by our model have maximum values that exceed the one observed in the data.

Figure 5: Histagram of Posterior Predictive T(yrep)
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b. Prior Predictive:
p(yrep) =

∫
Θ
p(yrep|θ)p(θ)dθ

∝
∫

Θ
e−

(yrep−θ)2
2 Iθ∈[−A,A]dθ

∝
√
π

2
1

2Aerf
(
θ − yrep
√

2

)
∝ 1

2A

[
Φ
(
θ − yrep)− Φ

(
− (θ − yrep)

)]

Given that limθ→∞

[
Φ
(
θ − yrep) − Φ

(
− (θ − yrep)

)]
≈ 1, it follows that, for large values of

θ ∈ [−A,A], p(yrep) ≈ 1
2A .

While the posterior predictive, p(yrep|y) (Equation 6.2), averages over the parameter space with
regards the posterior distribution, the prior predictive, p(yrep), does so with regards to the prior
distribution of θ. Thus, unlike the posterior predictive, the prior predictive distribution reflects
our lack of knowledge regarding θ in the replication of new y. That is, values of y in the posterior
predictive are generated based on our inferences about θ after having observed the data, while
values of y in the prior predictive are generated according to what was known about θ before
the data was observed. For this reason, drawing N samples of size n with uniformly distributed
values of θ in range [−A,A], will yield values of T (yrep) that are similarly distributed between 0
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and A, as shown in Figure 6 below.8 Consequently, given the size of A relative to T (y) = 8.1,
we obtain a p-value of ≈ 1, indicating that almost all of our simulated values of T (yrep) ≥ T (y)
(since necessarily, T (yrep) ≥ 0).

Figure 6: Histagram of Prior Predictive T(yrep)
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c. Indeed it makes sense for the distribution obtained in part (a) to be far more representative of the
observed data than the prior predictive distribution found in part (b). As mentioned previously, this
can be attributed to the fact that the parameter used to simulate y in the posterior predictive, is
itself largely determined by the data observed. On the other hand, the prior predictive, models y after
values of θ that reflect our lack of knowledge about the parameter prior to observing the data. Had we
used a more informative prior however, we likely would’ve obtained a less ambiguous prior predictive
distribution of T (yrep) with a p-value closer to the desired 0.5.

Problem 7: (Ch.6.9)
Model checking: Check the assumed model fitted to the rat tumor data in Section 5.3. Define some test
quantities that might be of scientific interest, and compare them to their posterior predictive distributions.

Solution

Model: Let yj be the number of rats with tumors out of nj rats in experiment j, with known nj , for
j = 1, 2, ..., 71. Moreover, let parameter θj be the probability of developing a tumor (or the true proportion
of rats with tumors) in the jth experiment, with all θj ’s assumed to be independently sampled from a Beta
distribution with hyperparameters (α, β). Using the same noninformative hyperprior discussed in Section 5.3
for this data, we obtain the following model.

yj |θj ∼ Binomial(nj , θj) for j = 1, 2, ..., 71
θj |α, β ∼ Beta(α, β) for j = 1, 2, ..., 71

p(α, β) ∝ (α, β)−5/2

8Namely, p(T (yrep)) ≈ 1
A
, since this test statistic is maxi|yrep

i | rather than maxi(yrep
i ).
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Joint Posterior:

p(θ, α, β|y) ∝ p(α, β)p(θ|α, β)p(y|θ, α, β)

∝ p(α, β)
71∏
j=1

Γ(α+ β)
Γ(α)Γ(β)θ

α−1
j (1− θj)β−1

71∏
j=1

θ
yj
j (1− θj)nj−yj

Conditional Posterior:

p(θ|α, β, y) = p(α, β)
71∏
j=1

Γ(α+ β + nj)
Γ(α+ yj)Γ(β + nj − yj)

θ
α+yj−1
j (1− θj)β+nj−yj−1

∝ Beta(α+ y, β + n− y)

Marginal Posterior:

p(α, β|y) ∝ p(α, β)
71∏
j=1

Γ(α+ β)
Γ(α)Γ(β)

Γ(α+ yj)Γ(β + nj − yj)
Γ(α+ β + nj)

To obtain posterior predictive replications, yrep, we follow the simulation process outlined below.

1. Use the marginal posterior distribution of hyperparameters to obtain probabilities, p(α, β|y), for all
pairwise values of (α, β) in some finite range9. Draw N = 1, 000 pairs, (αi, βi), via grid sampling.

2. Draw N = 1, 000 parameter values, θij , from the conditional posterior distribution, θj |α, β, yj ∼
Beta(α+ yj , β + nj − yj), such that each draw corresponds to a unique sampled pair, (αi, βi). Repeat
for each experiment j = 1, 2, ..., 71 (or pair (yj , nj)).

3. Produce N = 1, 000 posterior predictive replications, yrep
ij , from yrep

j |θj ∼ Binomial(nj , θj), such that
each value corresponds to a unique posterior draw, θij . Repeat for each experiment j = 1, 2, ..., 71 (or
set of θj draws).

From this process, we obtain a total N = 1, 000 simulations of replicated y observations for the J = 71
experiments, which we then use to evaluate our model by way of comparing a set of test statistics, T (yrep),
to their observed counterparts, T (yobs). Results are given below.

Test Statistics

a. Number of 0’s in y:

TA(y) =
J∑
i=1

Iyj=0

TA(yobs) = 14

pB = p
(
TA(yrep) ≥ TA(yobs)

)
= 1
N

N∑
i=1

ITA(yrep
i

)≥TA(yobs) ≈ 0.08

b. Mode10 of y:
TB(y) = k|fk=max{fmin{~y},...,fmax{~y}}

TB(yobs) = 0

pB = p
(
TB(yrep) ≥ TB(yobs)

)
= 1
N

N∑
i=1

ITB(yrep
i

)≥TB(yobs) ≈ 0.79

9Based on the observed hyperparameter space, we use α ∈ (0, 15] and β ∈ (0, 50] for this problem.
10Where fk is the frequency of value k, for all unique k ∈ ~y.

18



c. Mean of y:

TC(y) = 1
J

J∑
j=1

yj

TC(yobs) ≈ 3.76

pB = p
(
TC(yrep) ≥ TC(yobs)

)
= 1
N

N∑
i=1

ITC(yrep
i

)≥TC(yobs) ≈ 0.467

d. Maximum of y:
TD(y) = max

j
{y1, y2, ..., yJ}

TD(yobs) = 16

pB = p
(
TD(yrep) ≥ TD(yobs)

)
= 1
N

N∑
i=1

ITD(yrep
i

)≥TD(yobs) ≈ 0.601

e. Mean of y
n :

TE(y) = 1
J

J∑
j=1

yj
nj

TE(yobs) ≈ 0.138

pB = p
(
TE(yrep) ≥ TE(yobs)

)
= 1
N

N∑
i=1

ITE(yrep
i

)≥TE(yobs) ≈ 0.651

f. Maximum of y
n :

TF (y) = max
j
{ y1

n1
,
y2

n2
, ...,

yJ
nJ
}

TF (yobs) ≈ 0.375

pB = p
(
TF (yrep) ≥ TF (yobs)

)
= 1
N

N∑
i=1

ITF (yrep
i

)≥TF (yobs) ≈ 0.875

Figure 7.a: Histagram of Posterior Predictive TA(yrep)
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Figure 7.b: Histagram of Posterior Predictive TB(yrep)
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Figure 7.c: Histagram of Posterior Predictive TC(yrep)
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Figure 7.d: Histagram of Posterior Predictive TD(yrep)
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Figure 7.e: Histagram of Posterior Predictive TE(yrep)
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Figure 7.f: Histagram of Posterior Predictive TF(yrep)
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Problem 8: (Ch.7.5)
Power-transformed normal models: A natural expansion of the family of normal distributions, for
all-positive data, is through power transformations, which are used in various contexts, including regression
models. For simplicity, consider univariate data y = (y1, ..., yn), that we wish to model as independent and
identically normally distributed after transformation. Box and Cox (1964) propose the model, y(φ)

i ∼ N(µ, σ2),
where

y
(φ)
i =

{
(y(φ)
i − 1)/φ for φ 6= 0

log yi for φ = 0.

The parameterization in terms of y(φ)
i allows a continuous family of power transformations that includes

the logarithm as a special case. To perform Bayesian inference, one must set up a prior distribution for the
parameters, (µ, σ, φ).

a. It seems natural to apply a prior distribution of the form p(µ, log σ, φ) ∝ p(φ), where p(φ) is a prior
distribution (perhaps uniform) on φ alone. Unfortunately, this prior distribution leads to unreasonable
results. Set up a numerical example to show why. (*Hint: Consider what happens when all the data
points yi are multiplied by a constant factor).

(b) Box and Cox (1964) propose a prior distribution that has the form p(µ, σ, φ) ∝ ẏ1−φp(φ), where
ẏ = (

∏n
i=1 yi)1/n. Show that this prior distribution eliminates the problem in (a).

(c) Write the marginal posterior density, p(φ|y), for the model in (b).

(d) Discuss the implications of the fact that the prior distribution in (b) depends on the data.
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(e) The power transformation model is used with the understanding that negative values of y(φ)
i are not

possible. Discuss the effect of the implicit truncation on the model.

See Pericchi (1981) and Hinkley and Runger (1984) for further discussion of Bayesian analysis of power
transformations.

Solution

Problem 9: (Ch.7.6)
Fitting a power-transformed normal model: Table 7.3 gives short-term radon measurements for a
sample of houses in three counties in Minnesota (see Section 9.4 for more on this example). For this problem,
ignore the first-floor measurements (those indicated with asterisks in the table).

a. Fit the power-transformed normal model from Exercise 7.5 (b) to the basement measurements in Blue
Earth County.

b. Fit the power-transformed normal model to the basement measurements in all three counties, holding the
parameter φ equal for all three counties but allowing the mean and variance of the normal distribution
to vary.

c. Check the fit of the model using posterior predictive simulations.

d. Discuss whether it would be appropriate to simply fit a lognormal model to these data.

Table 7.3: Excluding First-Floor Measurements

County Radon Measurements (pCi/L)
Blue Earth 5.0, 13.0, 7.2, 6.8, 12.8, 9.5, 6.0, 3.8, 1.8, 6.9, 4.7, 9.5
Clay 12.9, 2.6, 26.6, 1.5, 13.0, 8.8, 19.5, 9.0, 13.1, 3.6
Goodhue 14.3, 7.6, 2.6, 43.5, 4.9, 3.5, 4.8, 5.6, 3.5, 3.9, 6.7

Solution
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Code

#### Q1 PART A ####
set.seed(47)

## Observed Data
y_j <- c(28, 8, -3, 7, -1, 1, 18, 12) # coaching effects in schools 1-8 (ordered)
sigma_j <- c(15, 10, 16, 11, 9, 11, 10, 18) # standard error in schools 1-8 (ordered)
sigma2_j <- sigma_jˆ2 # sampling variance in schools 1-8 (ordered)

## Simulating tau
tau <- seq(0, 30, 0.01) # random uniformly distributed values of tau

tau_posterior_density <- function(y_j, sigma2_j, tau){
# posterior of tau assuming uniform prior
inv_V_mu <- sum(1/(sigma2_j+tauˆ2))
mu_hat <- sum(y_j/(sigma2_j+tauˆ2))/inv_V_mu
a <- inv_V_muˆ(-1/2)
b <- (sigma2_j+tauˆ2)ˆ(-1/2)
c <- exp(-((y_j-mu_hat)ˆ2)/(2*(sigma2_j+tauˆ2)))
return(a*prod(b*c))

}

tau_posterior <- c() # probabilities for values of tau
for (i in 1:length(tau)){
tau_i <- tau_posterior_density(y_j=y_j, sigma2_j=sigma2_j, tau[i])
tau_posterior <- c(tau_posterior, tau_i)

}

tau_posterior_df <- data.frame(tau, tau_posterior)
ggplot(tau_posterior_df, aes(tau, tau_posterior)) +
geom_line(color="red") +
labs(title="Figure 1: Density of Marginal Posterior Tau",

x=TeX(r"($\tau$)"),
y="")

# inverse transform (cdf) sampling method
# approximating cdf empirically
norm_tau_post = tau_posterior/sum(tau_posterior) # normalizing probability values for tau
tau_post_cdf = cumsum(norm_tau_post) # cumulative sum
cdf_df = data.frame(tau, tau_post_cdf)
ggplot(cdf_df, aes(tau, tau_post_cdf)) +
geom_line(color="blue") +
labs(title="Figure 2: Approximate CDF of Marginal Posterior Tau",

x=TeX(r"($\tau$)"),
y="")

n <- 3000 # sample size

# tau draws
unif_vals <- runif(n, 0, 1) # uniform values
tau_sample <- c()
for (i in 1:n){
tau_draw <- sum(tau_post_cdf <= unif_vals[i])*0.01 # sample from cdf
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tau_sample <- c(tau_sample, tau_draw)
}

#hist(tau_sample)

set.seed(47)

## Simulating mu (from mu|tau,y)

inv_V_mu <- function(sigma2_j, tau){
sum(1/(sigma2_j+tauˆ2)) # inverse variance for mu|tau,y

}

mu_hat <- function(y_j, sigma2_j, tau){
sum(1/(sigma2_j+tauˆ2)*y_j)/inv_V_mu(sigma2_j, tau) # mean for mu|tau,y

}

# mu draws
mu_sample <- c()
for (i in 1:n){
mu_draw <- rnorm(n=1,

mean=mu_hat(y_j, sigma2_j, tau_sample[i]),
sd=inv_V_mu(sigma2_j, tau_sample[i])ˆ(-1/2)) # inv_V ˆ(-1/2) = sd

mu_sample <- c(mu_sample, mu_draw)
}

#hist(mu_sample)

set.seed(47)

## Simulating theta_j's (from theta|mu,tau,y)

V_j <- function(sigma2_j, tau){
if(tau==0){
v_j <- round(1/sum(1/sigma2_j), 1) # posterior variance | tau=0, 16.6

}
else {
v_j <- 1/((1/sigma2_j)+(1/tauˆ2))

}
return(v_j)

}

theta_hat_j <- function(y_j, sigma2_j, mu, tau){
if(tau==0){
theta_hat <- round(sum(y_j/sigma2_j)/sum(1/sigma2_j), 1) # pooled estimate, 7.7

}
else {
theta_hat <- ((1/sigma2_j)*y_j+(1/tauˆ2)*mu)*V_j(sigma2_j, tau)

}
return(theta_hat)

}

# pairs of mu and tau
mu_tau_pairs <- cbind(mu_sample, tau_sample)

23



# function to sample theta_j for specified j
theta_j <- function(j){
theta_j_sample <- c()
for(i in 1:n){
theta_j_draw <- rnorm(n=1,

mean=theta_hat_j(y_j[j], sigma2_j[j],
mu_tau_pairs[i,1], mu_tau_pairs[i,2]),

sd=V_j(sigma2_j[j], mu_tau_pairs[i,2])ˆ(1/2))
theta_j_sample <- c(theta_j_sample, theta_j_draw)

}
return(theta_j_sample)

}

# matrix of all parameter simulations
param_sims <- mu_tau_pairs

# applying function to each j and appending to matrix
for (i in 1:length(y_j)){

param_sims <- cbind(param_sims, theta_j(i))
colnames(param_sims)[i+2] <- paste0("theta_", i)

}

param_sims_df <- as.data.frame(param_sims)
head(param_sims_df)

## (i) Probability that school j has the largest coaching effect

max_theta_j <- apply(param_sims_df[,3:10], 1, which.max) # max theta_j for each draw
table(max_theta_j) # counts

max_theta_j_prob <- round(table(max_theta_j)/n, 4)*100 # probabilities (in percentages)

max_theta_j_prob <- as.data.frame(max_theta_j_prob)
colnames(max_theta_j_prob) <- c("School", "Probability (%)")
max_theta_j_prob[,1] <- LETTERS[1:8]

## (ii) Probability that school j has a larger effect than school k

theta_j_df <- param_sims_df[,3:10] # theta_j's df

# function to compare a column/school j to remaining columns/schools (k)
# returns the probabilities that school j's effect > each school k's
prob_comp <- function(theta_j_df, col_j){
new_df <- theta_j_df[,-col_j]
greater_than_probs <- c()
for (k in 1:ncol(new_df)){
greater_than_prob <- round(sum(col_j > new_df[,k])/nrow(new_df), 4)*100 # probability
greater_than_probs <- c(greater_than_probs, greater_than_prob)

}
return(greater_than_probs)

}

# compiling data frame of probabilities
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theta_j_gt_prob <- c(NA, prob_comp(theta_j_df, 1)) # function applied to school A

# applying function to schools B-H
for (i in 2:ncol(theta_j_df)){
probs <- prob_comp(theta_j_df, i)
row_probs <- c(probs[1:(i-1)], NA, probs[-c(1:(i-1))])
theta_j_gt_prob <- rbind(theta_j_gt_prob, row_probs)

}

theta_j_gt_prob <- as.data.frame(theta_j_gt_prob)
theta_j_gt_prob <- cbind(LETTERS[1:8], theta_j_gt_prob)
colnames(theta_j_gt_prob) <- c("j", LETTERS[1:8])
row.names(theta_j_gt_prob) <- 1:8

#### Q1 PART B ####
set.seed(47)

## Simulating theta_j's (from theta|mu,tau,y, with tau=infty)

# function to sample unpooled theta_j for specified j
unpooled_theta_j <- function(j){

unpooled_theta_j_sample <- c()
for(i in 1:n){
unpooled_theta_j_draw <- rnorm(n=1, mean=y_j[j], sd=sigma_j[j])
unpooled_theta_j_sample <- c(unpooled_theta_j_sample, unpooled_theta_j_draw)

}
return(unpooled_theta_j_sample)

}

# matrix of all parameter simulations (unpooled)
param_sims_b <- mu_tau_pairs

# applying function to each j and appending to matrix
for (i in 1:length(y_j)){
param_sims_b <- cbind(param_sims_b, unpooled_theta_j(i))
colnames(param_sims_b)[i+2] <- paste0("theta_", i)

}

param_sims_b_df <- as.data.frame(param_sims_b)

## (i) Probability that school j has the largest coaching effect (given tau=infty)

max_unpooled_theta_j <- apply(param_sims_b_df[,3:10], 1, which.max)
table(max_unpooled_theta_j)

max_unpooled_theta_j_prob <- round(table(max_unpooled_theta_j)/n, 4)*100 # probabilities (%)

max_unpooled_theta_j_prob <- as.data.frame(max_unpooled_theta_j_prob)
colnames(max_unpooled_theta_j_prob) <- c("School", "Probability (%)")
max_unpooled_theta_j_prob[,1] <- LETTERS[1:8]

## (ii) Probability that school j has a larger effect than school k (given tau=infty)

# compiling data frame of probabilities
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unpooled_theta_j_df <- param_sims_b_df[,3:10] # theta_j's df
unpooled_theta_j_gt_prob <- c(NA, prob_comp(unpooled_theta_j_df, 1)) # function form (a) applied to school A

# applying function to schools B-H
for (i in 2:ncol(unpooled_theta_j_df)){
probs <- prob_comp(unpooled_theta_j_df, i)
row_probs <- c(probs[1:(i-1)], NA, probs[-c(1:(i-1))])
unpooled_theta_j_gt_prob <- rbind(unpooled_theta_j_gt_prob, row_probs)

}

unpooled_theta_j_gt_prob <- as.data.frame(unpooled_theta_j_gt_prob)
unpooled_theta_j_gt_prob <- cbind(LETTERS[1:8], unpooled_theta_j_gt_prob)
colnames(unpooled_theta_j_gt_prob) <- c("j", LETTERS[1:8])
row.names(unpooled_theta_j_gt_prob) <- 1:8

#### Q1 PART D ####
set.seed(47)

## Simulating theta_j's (from theta|mu,tau,y, with tau=0)

# function to sample pooled theta_j
pooled_theta_j <- function(){

pooled_theta_j_sample <- rnorm(n=n,
mean=round(sum(y_j/sigma2_j)/sum(1/sigma2_j), 1),
sd=round(1/sum(1/sigma2_j), 1))

return(pooled_theta_j_sample)
}

# matrix of all parameter simulations (pooled)
param_sims_d <- mu_tau_pairs

# applying function to each j and appending to matrix
for (i in 1:length(y_j)){
param_sims_d <- cbind(param_sims_d, pooled_theta_j())
colnames(param_sims_d)[i+2] <- paste0("theta_", i)

}

param_sims_d_df <- as.data.frame(param_sims_d)

## (i) Probability that school j has the largest coaching effect (given tau=0)

max_pooled_theta_j <- apply(param_sims_d_df[,3:10], 1, which.max)
table(max_pooled_theta_j)

max_pooled_theta_j_prob <- round(table(max_pooled_theta_j)/n, 4)*100 # probabilities (%)

max_pooled_theta_j_prob <- as.data.frame(max_pooled_theta_j_prob)
colnames(max_pooled_theta_j_prob) <- c("School", "Probability (%)")
max_pooled_theta_j_prob[,1] <- LETTERS[1:8]

## (ii) Probability that school j has a larger effect than school k (given tau=0)

# compiling data frame of probabilities
pooled_theta_j_df <- param_sims_d_df[,3:10] # theta_j's df
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pooled_theta_j_gt_prob <- c(NA, prob_comp(pooled_theta_j_df, 1)) # function form (a) applied to school A

# applying function to schools B-H
for (i in 2:ncol(pooled_theta_j_df)){
probs <- prob_comp(pooled_theta_j_df, i)
row_probs <- c(probs[1:(i-1)], NA, probs[-c(1:(i-1))])
pooled_theta_j_gt_prob <- rbind(pooled_theta_j_gt_prob, row_probs)

}

pooled_theta_j_gt_prob <- as.data.frame(pooled_theta_j_gt_prob)
pooled_theta_j_gt_prob <- cbind(LETTERS[1:8], pooled_theta_j_gt_prob)
colnames(pooled_theta_j_gt_prob) <- c("j", LETTERS[1:8])
row.names(pooled_theta_j_gt_prob) <- 1:8

## Comparing Estimates of theta_j

y_j # observed estimates

# posterior estimates from a (partial-pooling)
theta_js_a <- as.vector(round(apply(param_sims_df[,3:10], 2, mean), 2)) # mean
#round(apply(param_sims_df[,3:10], 2, var), 2) # within-group variances
var(round(apply(param_sims_df[,3:10], 2, mean), 2)) # between-group variance

# posterior estimates from b (no-pooling)
theta_js_b <- as.vector(round(apply(param_sims_b_df[,3:10], 2, mean), 2)) # mean
#round(apply(param_sims_b_df[,3:10], 2, var), 2) # within-group variances
var(round(apply(param_sims_b_df[,3:10], 2, mean), 2)) # between-group variance

# posterior estimates from d (complete pooling)
theta_js_d <- as.vector(round(apply(param_sims_d_df[,3:10], 2, mean), 2)) # mean
#round(apply(param_sims_d_df[,3:10], 2, var), 2) # within-group variances
var(round(apply(param_sims_d_df[,3:10], 2, mean), 2)) # between-group variance

theta_j_estimates <- as.data.frame(cbind(LETTERS[1:8],
y_j,
theta_js_d,
theta_js_a,
theta_js_b))

colnames(theta_j_estimates) <- c("School", "Observed",
"Complete Pooling", "Partial-Pooling", "No-Pooling")

# between-group variances
theta_j_estimates <- rbind(theta_j_estimates,

c("Variance:",
round(var(theta_j_estimates[[2]]), 2),
round(var(theta_j_estimates[[3]]), 2),
round(var(theta_j_estimates[[4]]), 2),
round(var(theta_j_estimates[[5]]), 2)))

theta_j_estimates$School[9] <- cell_spec(theta_j_estimates$School[9], bold=TRUE)

## Boxplots for Estimates
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# complete pooling
boxplot(param_sims_d_df[,3:10],

names=LETTERS[1:8],
ylim=c(-60, 70),
col="lavender")

title(main="Figure 3.a: Coaching Effect Posterior Estimates, Complete Pooling",
xlab=" ",
ylab="Estimated Effect")

# partial-pooling
boxplot(param_sims_df[,3:10],

names=c(LETTERS[1:8]),
ylim=c(-60, 70),
col="lightpink")

title(main="Figure 3.b: Coaching Effect Posterior Estimates, Partial-Pooling",
xlab=" ",
ylab="Estimated Effect")

# no-pooling
boxplot(param_sims_b_df[,3:10],

names=LETTERS[1:8],
ylim=c(-60, 70),
col="lightblue")

title(main="Figure 3.c: Coaching Effect Posterior Estimates, No-Pooling",
xlab=" ",
ylab="Estimated Effect")

#### Q4 PART C ####
set.seed(47)

## Observed Data (Residential Street Bike Routes)
y_j <- c(16, 9, 10, 13, 19, 20, 18, 17, 35, 55) # bikes
n_j <- c(16+58, 9+90, 10+48, 13+57, 19+103, 20+57, 18+86, 17+112, 35+273, 55+64) # total
bar_y_j <- y_j/n_j # observed proportions

## Data Frame for Stan
i <- seq(1, 10, 1)
total <- n_j
bike_df <- as.data.frame(cbind(i, total))

# ## Contour Grid
# grid_x <- log(alpha/beta)
# grid_y <- log(alpha+beta)

## Model in Stan
stan_bike_model <- stan_model("/Users/antonellabasso/Desktop/PHP2530/bikes.stan")

## Fitting Model
stan_bike_model_fit <- stan_bike_model %>%
sampling(data=compose_data(bike_df), warmup=1000, iter=5000) %>% # tidybayes
recover_types(bike_df) # tidybayes

## Marginal Posterior Draws
stan_bike_model_draws <- stan_bike_model_fit %>%
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spread_draws(alpha, beta, theta[i]) # tidybayes

## Contour Plot for (alpha, beta)
bike_post_ab <- ggplot(stan_bike_model_draws, aes(alpha, beta))
bike_post_ab +
stat_density_2d() +
labs(title=TeX(r"(Figure 4.a: Marginal Posterior Contour of $(\alpha, \beta)$)"),

x=TeX(r"($\alpha$)"),
y=TeX(r"($\beta$)"))

# contour(z=kde2d(stan_bike_model_draws$alpha, stan_bike_model_draws$beta)$z)

## Scatterplot of Posterior Draws of (alpha, beta)
bike_post_ab +
geom_point() +
labs(title=TeX(r"(Figure 4.b: Marginal Posterior Draws of $(\alpha, \beta)$)"),

x=TeX(r"($\alpha$)"),
y=TeX(r"($\beta$)"))

#### Q4 PART E ####

## Parameter Summary Statistics
# stan_bike_model_fit
param_stats <- round(as.data.frame(summary(stan_bike_model_fit)), 4)[1:12, 1:8]
param_stats[, c(1, 3:8)] <- round(param_stats[, c(1, 3:8)], 2)
colnames(param_stats) <- c("Mean", "Mean SE", "SD",

"2.5\\%", "25\\%", "50\\%", "75\\%", "97.5\\%")

#### Q6 PART A ####
set.seed(47)

n <- 100
bar_y <- 5.1

## Posterior Predictive Draws
t_stat <- rep(0, 1000)
for (i in 1:1000){
theta_post <- rnorm(1, bar_y, sqrt(1/n))
y_rep <- rnorm(100, theta_post, 1)
t_stat[i] <- max(abs(y_rep))

}

## P-value for T(y)=8.1
sum(t_stat>8.1)/length(t_stat) # 0.126

## Histogram of T(y_rep)
hist(t_stat,

col="lavender",
main=TeX(r"(Figure 5: Histagram of Posterior Predictive $T(yˆ{rep})$)"),
xlab=TeX(r"($T(yˆ{rep})$)"))

abline(v=8.1, lty=2, col="red", lwd=2)

#### Q6 PART B ####

set.seed(47)
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## Prior Predictive Draws
A <- 10ˆ5
t_stat2 <- rep(0, 1000)
for (i in 1:1000){
theta_prior <- runif(1, -A, A)
y_rep <- rnorm(100, theta_prior, 1)
t_stat2[i] <- max(abs(y_rep))

}

## P-value for T(y)=8.1
sum(t_stat2>8.1)/length(t_stat2) # 1

## Histogram of T(y_rep)
hist(t_stat2,

col="lightpink",
main=TeX(r"(Figure 6: Histagram of Prior Predictive $T(yˆ{rep})$)"),
xlab=TeX(r"($T(yˆ{rep})$)"))

abline(v=8.1, lty=2, col="red", lwd=2)

#### Q7 ####
set.seed(47)

## Observed Data (Rat Tumors)
y_j <- c(0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 1, 5, 3, 2, 9, 4, 10, 4, 6, 5, 6, 0, 0, 0, 0, 1, 1, 2, 2, 2, 2, 5, 3, 10, 4, 4, 4, 4, 5, 6, 6, 6, 0, 0, 1, 1, 2, 2, 2, 7, 4, 4, 11, 12, 16, 15, 0, 0, 1, 1, 2, 2, 7, 3, 4, 4, 5, 5, 15, 9, 4) # tumors in each experiment

n_j <- c(20, 20, 20, 19, 18, 18, 18, 18, 25, 20, 10, 49, 20, 13, 48, 20, 48, 19, 23, 19, 22, 20, 20, 20, 17, 20, 20, 24, 23, 20, 19, 46, 27, 50, 20, 20, 19, 19, 22, 20, 20, 20, 20, 19, 20, 20, 20, 20, 17, 49, 20, 20, 46, 49, 52, 47, 19, 19, 19, 19, 20, 20, 47, 20, 20, 20, 20, 20, 46, 24, 14) # total rats in each experiment

bar_y_j <- y_j/n_j # observed means/proportions

## Marginal Posterior of (alpha, beta)
alpha <- seq(0.1, 15, 0.1)
beta <- seq(from=0.1, 50, 0.1)

marginal_post <- function(y=y_j, n=n_j, a, b){
J <- length(y)
hyperprior <- (a+b)ˆ(-5/2)

log_liks <- c()
for (i in 1:J){
num <- lgamma(a+b)+lgamma(a+y[i])+lgamma(b+n[i]-y[i])
denom <- lgamma(a)+lgamma(b)+lgamma(a+b+n[i])
log_lik <- num-denom
log_liks <- c(log_liks, log_lik)

}

log_post <- log(hyperprior)+sum(log_liks)
return(log_post)

}

## Posterior Draws of (alpha, beta) - via grid sampling
N <- 1000

alpha_grid <- rep(alpha, each=length(beta))
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beta_grid <- rep(beta, times=length(alpha))
alpha_beta_combs <- cbind(alpha_grid, beta_grid)

log_probs <- c()
for (i in 1:nrow(alpha_beta_combs)){

log_probs[i] <- marginal_post(y=y_j,
n=n_j,
a=alpha_beta_combs[i, 1],
b=alpha_beta_combs[i, 2])

}

alpha_beta_probs <- exp(log_probs-max(log_probs)) # posterior, avoiding underflow errors
alpha_beta_combs <- cbind(alpha_beta_combs, alpha_beta_probs)

index_samps <- sample(1:nrow(alpha_beta_combs), N, replace=TRUE, prob=alpha_beta_probs)
#hist(index_samps)

alpha_draws <- c()
beta_draws <- c()
for (i in 1:N){
index <- index_samps[i]
alpha_draws[i] <- alpha_beta_combs[index, 1]
beta_draws[i] <- alpha_beta_combs[index, 2]

}

alpha_beta_draws <- cbind(alpha_draws, beta_draws) # final draws

## Contour Plot for (alpha, beta)
rat_post_ab <- ggplot(as.data.frame(alpha_beta_draws),

aes(alpha_draws, beta_draws))
rat_post_ab +
stat_density_2d() +
labs(title=TeX(r"(Marginal Posterior Contour of $(\alpha, \beta)$)"),

x=TeX(r"($\alpha$)"),
y=TeX(r"($\beta$)"))

## Scatterplot of Posterior Draws of (alpha, beta)
rat_post_ab +
geom_point() +
labs(title=TeX(r"(Marginal Posterior Draws of $(\alpha, \beta)$)"),

x=TeX(r"($\alpha$)"),
y=TeX(r"($\beta$)"))

## Conditional Posterior Draws of theta | alpha, beta
rat_param_sims <- alpha_beta_draws

for (i in 1:length(y_j)){
theta_samp_j <- rbeta(N,

alpha_beta_draws[, 1]+y_j[i],
alpha_beta_draws[, 2]+n_j[i]-y_j[i])

rat_param_sims <- cbind(rat_param_sims, theta_samp_j)
colnames(rat_param_sims)[i+2] <- paste0("theta_", i)

}
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## Posterior Predictive Draws of y_rep | theta
predictive_post <- function(n, theta){
y_rep_j <- rbinom(N, n, theta_draw)
return(y_rep_j)

}

y_rep_1 <- rbinom(N, n_j[1], rat_param_sims[, 3])
for (i in 2:length(y_j)){
y_rep_samp_j <- rbinom(N, n_j[i], rat_param_sims[, i+2])
y_rep_1 <- cbind(y_rep_1, y_rep_samp_j)
colnames(y_rep_1)[i] <- paste0("y_rep_", i)

}

rat_y_reps <- as.data.frame(y_rep_1)

set.seed(47)

## Test Statistics for y

# (A) Zero Count
t_y_rep_0 <- apply(rat_y_reps, 1, function(x) sum(x==0))
t_y_0 <- sum(y_j==0) # T(y)=14
hist(t_y_rep_0,

col="skyblue",
main=TeX(r"(Figure 7.a: Histagram of Posterior Predictive $T_A(yˆ{rep})$)"),
xlab=TeX(r"($T_A(yˆ{rep})$)"))

abline(v=t_y_0, lty=2, col="red", lwd=2)
sum(t_y_rep_0>t_y_0)/length(t_y_rep_0) # p-value=0.08

# (B) Mode
mode <- function(x){

unique_x <- unique(x)
mode <- unique_x[which.max(tabulate(match(x, unique_x)))]
return(as.numeric(mode))

}
t_y_rep_mode <- apply(rat_y_reps, 1, mode)
t_y_mode <- mode(y_j) # T(y)=0
hist(t_y_rep_mode,

col="skyblue",
main=TeX(r"(Figure 7.b: Histagram of Posterior Predictive $T_B(yˆ{rep})$)"),
xlab=TeX(r"($T_B(yˆ{rep})$)"))

abline(v=t_y_mode, lty=2, col="red", lwd=2)
sum(t_y_rep_mode>t_y_mode)/length(t_y_rep_mode) # p-value=0.79

# (C) Mean
t_y_rep_mean <- apply(rat_y_reps, 1, mean)
t_y_mean <- mean(y_j) # T(y)=3.760563
hist(t_y_rep_mean,

col="skyblue",
main=TeX(r"(Figure 7.c: Histagram of Posterior Predictive $T_C(yˆ{rep})$)"),
xlab=TeX(r"($T_C(yˆ{rep})$)"))

abline(v=t_y_mean, lty=2, col="red", lwd=2)
sum(t_y_rep_mean>t_y_mean)/length(t_y_rep_mean) # p-value=0.467
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# (D) Maximum
t_y_rep_max <- apply(rat_y_reps, 1, max)
t_y_max <- max(y_j)
hist(t_y_rep_max,

col="skyblue",
main=TeX(r"(Figure 7.d: Histagram of Posterior Predictive $T_D(yˆ{rep})$)"),
xlab=TeX(r"($T_D(yˆ{rep})$)"))

abline(v=t_y_max, lty=2, col="red", lwd=2)
sum(t_y_rep_max>t_y_max)/length(t_y_rep_max) # p-value=0.601

## Test Statistics for bar_y = y/n (proportions/means)
rat_bar_y_reps <- as.data.frame(t(apply(rat_y_reps, 1, function(x) x/n_j)))

# (E) Mean
t_bar_y_rep_mean <- apply(rat_bar_y_reps, 1, mean)
t_bar_y_mean <- mean(bar_y_j)
hist(t_bar_y_rep_mean,

col="skyblue",
main=TeX(r"(Figure 7.e: Histagram of Posterior Predictive $T_E(yˆ{rep})$)"),
xlab=TeX(r"($T_E(yˆ{rep})$)"))

abline(v=t_bar_y_mean, lty=2, col="red", lwd=2)
sum(t_bar_y_rep_mean>t_bar_y_mean)/length(t_bar_y_rep_mean) # p-value=0.651

# (F) Maximum
t_bar_y_rep_max <- apply(rat_bar_y_reps, 1, max)
t_bar_y_max <- max(bar_y_j)
hist(t_bar_y_rep_max,

col="skyblue",
main=TeX(r"(Figure 7.f: Histagram of Posterior Predictive $T_F(yˆ{rep})$)"),
xlab=TeX(r"($T_F(yˆ{rep})$)"))

abline(v=t_bar_y_max, lty=2, col="red", lwd=2)
sum(t_bar_y_rep_max>t_bar_y_max)/length(t_bar_y_rep_max) # p-value=0.875
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